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I.   INTRODUCTION 

Fractional calculus is a mathematical tool used to study the derivatives and integrals of any order. It unifies and extends the 

concepts of derivative and integral of integer order. Generally speaking, many scientists do not know these fractional 

derivatives and integrals, nor do they use them in the purely mathematical field. However, in the past decades, fractional 

calculus has been widely used in many scientific fields, such as mechanics, electrical engineering, viscoelasticity, biology, 

physics, economics, etc [1-9]. 

The definition of fractional derivative is not unique. The commonly used definitions are Riemann-Liouvellie (R-L) 

fractional derivative, Caputo fractional derivative, Grunwald-Letnikov (G-L) fractional derivative, conformable fractional 

derivative, and Jumarie’s modified R-L fractional derivative [10-14]. Since Jumarie’s modification of R-L fractional 

derivative helps to avoid non-zero fractional derivative of constant function, it is easier to use this definition to connect 

fractional calculus with classical calculus. 

In this paper, based on Jumarie type of R-L fractional derivative and a new multiplication of fractional power series, some 

examples are given to illustrate how to use fractional power series method to solve fractional differential equations. Chain 

rule and product rule for fractional derivatives play important roles in this article. In fact, our results are generalization of 

those results of ordinary differential equations. On the other hand, the new multiplication we defined is a natural operation 

of fractional power series.  

II.   PRELIMINARIES 

Firstly, we introduce the fractional calculus used in this paper. 

Definition 2.1 ([15]): If 0 < 𝛼 ≤ 1, and 𝑥0 is a real number. The Jumarie type of Riemann-Liouville (R-L) 𝛼-fractional 

derivative is defined by 

                                                                         ( 𝐷𝑥0 𝑥
𝛼)[𝑓(𝑥)] =

1

Γ(1−𝛼)

𝑑

𝑑𝑥
∫

𝑓(𝑡)−𝑓(𝑥0)

(𝑥−𝑡)𝛼 𝑑𝑡
𝑥

𝑥0
 ,                                                    (1) 
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where Γ( )  is the gamma function. Moreover, we define ( 𝐷𝑥0 𝑥
𝛼)

𝑛
[𝑓(𝑥)] = ( 𝐷𝑥0 𝑥

𝛼)( 𝐷𝑥0 𝑥
𝛼) ∙∙∙ ( 𝐷𝑥0 𝑥

𝛼)[𝑓(𝑥)] , and it is 

called the 𝑛-th order 𝛼-fractional derivative of 𝑓(𝑥), where 𝑛 is arbitrary positive integer. 

Proposition 2.2 ([16]):  Let  𝛼, 𝛽, 𝑥0, 𝑐 be real numbers and 𝛽 ≥ 𝛼 > 0, then 

                                                                           ( 𝐷𝑥0 𝑥
𝛼)[(𝑥 − 𝑥0)𝛽] =

Γ(𝛽+1)

Γ(𝛽−𝛼+1)
(𝑥 − 𝑥0)𝛽−𝛼,                                              (2) 

and 

                                                                                               ( 𝐷𝑥0 𝑥
𝛼)[𝑐] = 0.                                                                              (3) 

 

In the following, the definition of fractional power series is introduced. 

Definition 2.3 ([17]): Assume that 0 < 𝛼 ≤ 1 , 𝑥, 𝑥0, and  𝑎𝑘 be real numbers for all 𝑘.  ∑
𝑎𝑘

Γ(𝑘𝛼+1)
(𝑥 − 𝑥0)𝑘𝛼∞

𝑘=0  is called 

a 𝛼-fractional power series at 𝑥 = 𝑥0. 

Next, we introduce a new multiplication of fractional power series.  

Definition 2.4 ([18]): If  0 < 𝛼 ≤ 1, and 𝑥0 is a real number. Suppose that 𝑓𝛼(𝑥𝛼) and 𝑔𝛼(𝑥𝛼) are 𝛼-fractional power series 

at  𝑥 = 𝑥0 , 

                                                                                  𝑓𝛼(𝑥𝛼) = ∑
𝑎𝑘

Γ(𝑘𝛼+1)
(𝑥 − 𝑥0)𝑘𝛼∞

𝑘=0 ,                                                         (4) 

                                                                                 𝑔𝛼(𝑥𝛼) = ∑
𝑏𝑘

Γ(𝑘𝛼+1)
(𝑥 − 𝑥0)𝑘𝛼 .∞

𝑘=0                                                          (5) 

Then  

                                                                     𝑓𝛼(𝑥𝛼) ⊗ 𝑔𝛼(𝑥𝛼)  

                                                               = ∑
𝑎𝑘

Γ(𝑘𝛼+1)
(𝑥 − 𝑥0)𝑘𝛼∞

𝑘=0 ⊗ ∑
𝑏𝑘

Γ(𝑘𝛼+1)
(𝑥 − 𝑥0)𝑘𝛼∞

𝑘=0   

                                                               = ∑
1

Γ(𝑘𝛼+1)
(∑ (

𝑘
𝑚

) 𝑎𝑘−𝑚𝑏𝑚
𝑘
𝑚=0 )∞

𝑘=0 (𝑥 − 𝑥0)𝑘𝛼 .                                                (6) 

In other words, 

                                                       𝑓𝛼(𝑥𝛼) ⊗ 𝑔𝛼(𝑥𝛼) 

                                                 = ∑
𝑎𝑘

𝑘!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝑘
∞
𝑘=0 ⊗ ∑

𝑏𝑘

𝑘!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝑘
∞
𝑘=0   

                                                 = ∑
1

𝑘!
(∑ (

𝑘
𝑚

) 𝑎𝑘−𝑚𝑏𝑚
𝑘
𝑚=0 )∞

𝑘=0 (
1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝑘

 .                                                   (7) 

Definition 2.5 ([19]): Suppose that 0 < 𝛼 ≤ 1, and 𝑓𝛼(𝑥𝛼),  𝑔𝛼(𝑥𝛼) are 𝛼-fractional power series at 𝑥 = 𝑥0 , 

                                             𝑓𝛼(𝑥𝛼) = ∑
𝑎𝑘

Γ(𝑘𝛼+1)
(𝑥 − 𝑥0)𝑘𝛼 = ∑

𝑎𝑘

𝑘!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝑘
∞
𝑘=0

∞
𝑘=0  ,                               (8) 

                                            𝑔𝛼(𝑥𝛼) = ∑
𝑏𝑘

Γ(𝑘𝛼+1)
(𝑥 − 𝑥0)𝑘𝛼 = ∑

𝑏𝑘

𝑘!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝑘

.∞
𝑘=0

∞
𝑘=0                                 (9) 

The compositions of 𝑓𝛼(𝑥𝛼) and 𝑔𝛼(𝑥𝛼) are defined by 

                                                        (𝑓𝛼 ∘ 𝑔𝛼)(𝑥𝛼) = 𝑓𝛼(𝑔𝛼(𝑥𝛼)) = ∑
𝑎𝑘

𝑘!
(𝑔𝛼(𝑥𝛼))

⨂𝑘∞
𝑘=0 ,                                             (10) 

and 

                                                        (𝑔𝛼 ∘ 𝑓𝛼)(𝑥𝛼) = 𝑔𝛼(𝑓𝛼(𝑥𝛼)) = ∑
𝑏𝑘

𝑘!
(𝑓𝛼(𝑥𝛼))

⨂𝑘∞
𝑘=0 .                                              (11) 
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Definition 2.6 ([19]): Suppose that 0 < α ≤ 1, and 𝑥 is a real number. The 𝛼-fractional exponential function is defined by 

                                                                    𝐸𝛼(𝑥𝛼) = ∑
𝑥𝑘𝛼

Γ(𝑘𝛼+1)
= ∑

1

𝑘!
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝑘

.∞
𝑘=0

∞
𝑘=0                                          (12) 

In addition, the 𝛼-fractional cosine and sine function are defined as follows: 

                                                        𝑐𝑜𝑠𝛼(𝑥𝛼) = ∑
(−1)𝑘𝑥2𝑘𝛼

Γ(2𝑘𝛼+1)
= ∑

(−1)𝑘

(2𝑘)!
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂2𝑘
∞
𝑘=0

∞
𝑘=0 ,                                        (13) 

and 

                                                      𝑠𝑖𝑛𝛼(𝑥𝛼) = ∑
(−1)𝑘𝑥(2𝑘+1)𝛼

Γ((2𝑘+1)𝛼+1)
= ∑

(−1)𝑘

(2𝑘+1)!
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂(2𝑘+1)
∞
𝑘=0

∞
𝑘=0  .                          (14) 

Definition 2.7 ([20]): Let 𝑛 be a positive integer,  (𝑓𝛼(𝑥𝛼))
⊗𝑛

= 𝑓𝛼(𝑥𝛼) ⊗ ⋯ ⊗ 𝑓𝛼(𝑥𝛼) is called the 𝑛th power of 𝑓𝛼(𝑥𝛼). 

Moreover, we define (𝑓𝛼(𝑥𝛼))
⊗0

= 1.  

Theorem 2.8 (chain rule for fractional derivatives) ([21]): If  0 < 𝛼 ≤ 1, and assume that  𝑓𝛼(𝑥𝛼), 𝑔𝛼(𝑥𝛼) are 𝛼-fractional 

power series at 𝑥 = 𝑥0. Then 

                                             ( 𝐷𝑥0 𝑥
𝛼)[ 𝑓𝛼(𝑔𝛼(𝑥𝛼))] = ( 𝐷𝑥0 𝑥

𝛼)[𝑓𝛼(𝑥𝛼)](𝑔𝛼(𝑥𝛼)) ⊗ ( 𝐷𝑥0 𝑥
𝛼)[𝑔𝛼(𝑥𝛼)].                         (15) 

Theorem 2.9 (product rule for fractional derivatives) ([21]): Let 0 < 𝛼 ≤ 1, and 𝑓𝛼(𝑥𝛼) and 𝑔𝛼(𝑥𝛼) be 𝛼-fractional power 

series at 𝑥 = 𝑥0, then  

                      ( 𝐷𝑥0 𝑥
𝛼)[ 𝑓𝛼(𝑥𝛼) ⊗ 𝑔𝛼(𝑥𝛼)] = ( 𝐷𝑥0 𝑥

𝛼)[ 𝑓𝛼(𝑥𝛼)] ⊗ 𝑔𝛼(𝑥𝛼) +  𝑓𝛼(𝑥𝛼) ⊗ ( 𝐷𝑥0 𝑥
𝛼)[ 𝑔𝛼(𝑥𝛼)].             (16) 

III.   EXAMPLES 

In this section, we give some examples to illustrate how to use fractional power series method to solve fractional differential 

equations. 

Example 3.1:  Let 0 < 𝛼 ≤ 1. Solve the initial problem of first order 𝛼-fractional differential equation  

                                                                ( 𝐷0 𝑥
𝛼)[ 𝑦𝛼(𝑥𝛼)] − (

1

Γ(𝛼+1)
𝑥𝛼)

⊗2

−  𝐸𝛼( 𝑦𝛼) = 0,                                               (17) 

                                                                                                       𝑦𝛼(0) = 0.                                                                               (18) 

Solution    Let the solution be   

  𝑦𝛼(𝑥𝛼) =  𝑦𝛼(0) +
( 𝐷0 𝑥

𝛼)[ 𝑦𝛼(𝑥𝛼)](0)

Γ(𝛼+1)
𝑥𝛼 +

( 𝐷0 𝑥
𝛼)

2
[ 𝑦𝛼(𝑥𝛼)](0)

Γ(2𝛼+1)
𝑥2𝛼 +

( 𝐷0 𝑥
𝛼)

3
[ 𝑦𝛼(𝑥𝛼)](0)

Γ(3𝛼+1)
𝑥3𝛼 +

( 𝐷0 𝑥
𝛼)

4
[ 𝑦𝛼(𝑥𝛼)](0)

Γ(4𝛼+1)
𝑥4𝛼 + ⋯.      

(19) 

Then by this fractional differential equation and chain rule and product rule for fractional derivatives, 

                                                              ( 𝐷0 𝑥
𝛼)[ 𝑦𝛼(𝑥𝛼)] = (

1

Γ(𝛼+1)
𝑥𝛼)

⊗2

+  𝐸𝛼( 𝑦𝛼),                                                      (20) 

                                                   ( 𝐷0 𝑥
𝛼)

2
[ 𝑦𝛼(𝑥𝛼)] = 2 ∙

1

Γ(𝛼+1)
𝑥𝛼 +  𝐸𝛼( 𝑦𝛼)⨂( 𝐷0 𝑥

𝛼)[ 𝑦𝛼(𝑥𝛼)],                                  (21) 

                    ( 𝐷0 𝑥
𝛼)

3
[ 𝑦𝛼(𝑥𝛼)] = 2 +  𝐸𝛼( 𝑦𝛼)⨂( 𝐷0 𝑥

𝛼)
2

[ 𝑦𝛼(𝑥𝛼)] +  𝐸𝛼( 𝑦𝛼)⨂ (( 𝐷0 𝑥
𝛼)[ 𝑦𝛼(𝑥𝛼)])

⊗2

,                  (22) 

            ( 𝐷0 𝑥
𝛼)

4
[ 𝑦𝛼(𝑥𝛼)] =  𝐸𝛼( 𝑦𝛼)⨂( 𝐷0 𝑥

𝛼)
3

[ 𝑦𝛼(𝑥𝛼)] + 3 𝐸𝛼( 𝑦𝛼)⨂( 𝐷0 𝑥
𝛼)[ 𝑦𝛼(𝑥𝛼)]⨂( 𝐷0 𝑥

𝛼)
2

[ 𝑦𝛼(𝑥𝛼)] 

                                                  + 𝐸𝛼( 𝑦𝛼)⨂ (( 𝐷0 𝑥
𝛼)[ 𝑦𝛼(𝑥𝛼)])

⊗3

.                                                                                     (23) 

Takig  𝑥 = 0  and use the initial condition 𝑦𝛼(0) = 0, we obtain 
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                                                                                   ( 𝐷0 𝑥
𝛼)[ 𝑦𝛼(𝑥𝛼)](0) = 1,                                                                      (24) 

                                                                                  ( 𝐷0 𝑥
𝛼)

2
[ 𝑦𝛼(𝑥𝛼)](0) = 1,                                                                     (25) 

                                                                                  ( 𝐷0 𝑥
𝛼)

3
[ 𝑦𝛼(𝑥𝛼)](0) = 4,                                                                    (26) 

                                                                                  ( 𝐷0 𝑥
𝛼)

4
[ 𝑦𝛼(𝑥𝛼)](0) = 8.                                                                    (27) 

So we get the fractional power series solution of this 𝛼-fractional differential equation 

                                             𝑦𝛼(𝑥𝛼) =
1

Γ(𝛼+1)
𝑥𝛼 +

1

Γ(2𝛼+1)
𝑥2𝛼 +

4

Γ(3𝛼+1)
𝑥3𝛼 +

8

Γ(4𝛼+1)
𝑥4𝛼 + ⋯.                               (28) 

Example 3.2:  Suppose that 0 < 𝛼 ≤ 1. Find the general solution of first order 𝛼-fractional differential equation  

                   (
1

Γ(𝛼+1)
𝑥𝛼) ⨂( 𝐷0 𝑥

𝛼)[ 𝑦𝛼(𝑥𝛼)] − (
1

Γ(𝛼+1)
𝑥𝛼 + 2) ⨂ 𝑦𝛼(𝑥𝛼) = −2 (

1

Γ(𝛼+1)
𝑥𝛼)

⊗2

− 2
1

Γ(𝛼+1)
𝑥𝛼.       (29) 

Solution     Let the general solution be   

                                                                               𝑦𝛼(𝑥𝛼) = ∑ 𝑎𝑘 (
1

Γ(𝛼+1)
𝑥𝛼)

⨂𝑘
∞
𝑘=0   .                                                        (30) 

Then by chain rule for fractional derivatives, 

                                                              ( 𝐷0 𝑥
𝛼)[ 𝑦𝛼(𝑥𝛼)] = ∑ 𝑘𝑎𝑘 (

1

Γ(𝛼+1)
𝑥𝛼)

⨂(𝑘−1)
∞
𝑘=1 ,                                                 (31) 

Taking into the original equation to get 

0 = ∑ 𝑘𝑎𝑘 (
1

Γ(𝛼+1)
𝑥𝛼)

⨂𝑘

− ∑ 𝑎𝑘 (
1

Γ(𝛼+1)
𝑥𝛼)

⨂(𝑘+1)
∞
𝑘=0

∞
𝑘=1 − 2 ∑ 𝑎𝑘 (

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝑘
∞
𝑘=0 + 2 (

1

Γ(𝛼+1)
𝑥𝛼)

⊗2

+ 2
1

Γ(𝛼+1)
𝑥𝛼  

   = −2𝑎0 + (−𝑎1 − 𝑎0 + 2)
1

Γ(𝛼+1)
𝑥𝛼 + (−𝑎1 + 2) (

1

Γ(𝛼+1)
𝑥𝛼)

⨂ 2

+ ∑ ((𝑘 − 2)𝑎𝑘 − 𝑎𝑘−1) (
1

Γ(𝛼+1)
𝑥𝛼)

⨂𝑘
∞
𝑘=3  .      (32) 

Thus, 

                                                                      𝑎0 = 0, 𝑎1 = 2, and 𝑎𝑘 =
1

𝑘−2
 𝑎𝑘−1 for all 𝑘 ≥ 3.                                             (33) 

Hence, 

                                              𝑎3 = 𝑎2, 𝑎4 =
1

2
𝑎3 =

1

2!
𝑎2, 𝑎5 =

1

3
𝑎4 =

1

3!
𝑎2, 𝑎6 =

1

4
𝑎5 =

1

4!
𝑎2, ⋯                                     (34) 

Therefore, the general solution of this 𝛼-fractional differential equation is  

       𝑦𝛼(𝑥𝛼) = 2 ∙
1

Γ(𝛼+1)
𝑥𝛼 + 𝑎2 (

1

Γ(𝛼+1)
𝑥𝛼)

⨂ 2

⨂ [1 +
1

Γ(𝛼+1)
𝑥𝛼 +

1

2!
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂ 2

+
1

3!
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂ 3

+ ⋯ ]  

                     = 2 ∙
1

Γ(𝛼+1)
𝑥𝛼 + 𝑎2 (

1

Γ(𝛼+1)
𝑥𝛼)

⨂ 2

⨂ 𝐸𝛼(𝑥𝛼) .                                                                                                (35) 

Where 𝑎2 is any constant. 

Example 3.3:  If 0 < 𝛼 ≤ 1. Solve initial value problem of second order 𝛼-fractional differential equation  

                                                                             ( 𝐷0 𝑥
𝛼)

2
[ 𝑦𝛼(𝑥𝛼)] +  𝑦𝛼(𝑥𝛼) = 0.                                                               (36) 

                                                                         𝑦𝛼(0) = −5, ( 𝐷0 𝑥
𝛼)[ 𝑦𝛼(𝑥𝛼)](0) = 3.                                                          (37) 

Solution     Let the solution be   

                                                                               𝑦𝛼(𝑥𝛼) = ∑ 𝑎𝑘 (
1

Γ(𝛼+1)
𝑥𝛼)

⨂𝑘
∞
𝑘=0   .                                                          (38) 
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Using chain rule for fractional derivatives yields 

                                                              ( 𝐷0 𝑥
𝛼)[ 𝑦𝛼(𝑥𝛼)] = ∑ 𝑘𝑎𝑘 (

1

Γ(𝛼+1)
𝑥𝛼)

⨂(𝑘−1)
∞
𝑘=1 ,                                                   (39) 

and hence, 

                                                          ( 𝐷0 𝑥
𝛼)

2
[ 𝑦𝛼(𝑥𝛼)] = ∑ 𝑘(𝑘 − 1)𝑎𝑘 (

1

Γ(𝛼+1)
𝑥𝛼)

⨂(𝑘−2)
∞
𝑘=2  .                                      (40) 

Taking into the original equation to obtain 

0 = ∑ 𝑘(𝑘 − 1)𝑎𝑘 (
1

Γ(𝛼+1)
𝑥𝛼)

⨂(𝑘−2)
∞
𝑘=2 + ∑ 𝑎𝑘 (

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝑘
∞
𝑘=0   

   = (𝑎0 + 2𝑎2) + (𝑎1 + 6𝑎3)
1

Γ(𝛼+1)
𝑥𝛼 + (𝑎2 + 12𝑎4) (

1

Γ(𝛼+1)
𝑥𝛼)

⨂ 2

+ (𝑎3 + 20𝑎5) (
1

Γ(𝛼+1)
𝑥𝛼)

⨂ 3

+ ⋯ .      (41) 

Hence, 

                                              𝑎0 + 2𝑎2 = 0, 𝑎1 + 6𝑎3 = 0, 𝑎2 + 12𝑎4 = 0, 𝑎3 + 20𝑎5 = 0 , ⋯                                  (42) 

Thus, 

                                                       𝑎2 = −
1

2!
𝑎0, 𝑎3 = −

1

3!
𝑎1, 𝑎4 =

1

4!
𝑎0, 𝑎5 =

1

5!
𝑎1, 𝑎6 = −

1

6!
𝑎0, ⋯                          (43) 

So, the general solution of this 𝛼-fractional differential equation is  

 𝑦𝛼(𝑥𝛼) = 𝑎1 [
1

1!
(

1

Γ(𝛼+1)
𝑥𝛼) −

1

3!
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂ 3

+
1

5!
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂ 5

− ⋯ ] +𝑎0 [1 −
1

2!
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂ 2

+
1

4!
(

1

Γ(𝛼+1)
𝑥𝛼)

4

−

⋯ ]  

              = 𝑎1 𝑠𝑖𝑛𝛼(𝑥𝛼)+𝑎0𝑐𝑜𝑠𝛼(𝑥𝛼) .                                                                                                                                (44) 

Where 𝑎1, 𝑎0 are any constants. 

Since  𝑦𝛼(0) = −5, ( 𝐷0 𝑥
𝛼)[ 𝑦𝛼(𝑥𝛼)](0) = 3. It follows that 𝑎0 = −5, 𝑎1 = 3. Consequently, the fractional power series 

solution of this initial value problem is 

                                                                                           𝑦𝛼(𝑥𝛼) = 3 𝑠𝑖𝑛𝛼(𝑥𝛼) − 5𝑐𝑜𝑠𝛼(𝑥𝛼) .                                                (45) 

IV.   CONCLUSION 

In this paper, we provide three examples to illustrate how to use fractional power series to solve fractional differential 

equations based on Jumarie’s modified R-L fractional derivative. A new multiplication of fractional power series, and chain 

rule and product rule for fractional derivatives play important roles in this article. In fact, the new multiplication we defined 

is a natural operation of fractional power series. In the future, we will use Jumarie type of R-L fractional derivative and 

fractional power series method to expand the research field to engineering mathematics and fractional calculus problems. 
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